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A unified theory of deformation at all scales is outlined. Processes operating during deformation and
metamorphism can be coupled in the form of reaction-diffusion equations. Solutions to these equations
depend on the specific processes that dominate the dissipation of energy. Hobbs et al. (2008) is con-
cerned with a scale where deformation and conduction of heat dominate and this corresponds to the
regional scale. Other papers present results for other length and time scales. Boudinage develops through
these processes in materials where the strict Biot theory predicts no boudinage. The strict Biot theory is
applicable only at the instant of instability and provides no information on the subsequent growth of the
folds. Analytical results for growth to large amplitudes show that only one wavelength develops and not
a spectrum of wavelengths as proposed by Treagus and Hudleston (in press) and others. The wavelength
to thickness ratio that finally develops is strongly dependent on boundary conditions and so such ratios
tell us nothing about the conditions of folding unless these boundary conditions are known. The
processes involved in folding with thermal-mechanical feedback are identical for single- and multi-layer
systems so that it requires little space to expand the discussion to multi-layers.

� 2008 Published by Elsevier Ltd.
We thank Sue Treagus and Peter Hudleston for the opportunity
to expand on our paper on the formation of folds through thermal-
mechanical feedback (Hobbs et al., 2008) and to clarify some
apparent omissions. Their comments address three main issues. (i)
Our paper addressed folds at regional scales and did not demon-
strate folds at finer scales such as one might observe at outcrop,
hand specimen or thin section scales; as part of this issue we also
promised a unified framework which does not appear obvious to
Treagus and Hudleston from our paper. We also promised an
application to boudinage. (ii) The wavelength to thickness ratios we
quoted for natural folds are not comprehensive and representative
of natural folds and in particular of that predicted by the Biot
theory. (iii) Our paper concentrated on single layer folds and the
real interest is in multi-layer folds to which we relegated a small
amount of space. We address these three issues below.

1. A unified framework, the scale issue and boudinage

The deformation of rocks takes place together with other
processes of interest to structural geologists including meta-
morphic mineral reactions, metamorphic differentiation, micro-
structural adjustments such as grain-size reduction, preferred
orientation development, fracturing and melting. None of these
.
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processes are addressed within a Biot framework; our motivation is
to develop a self-consistent framework where all the processes that
operate during orogenesis are integrated within that framework.
The processes mentioned are thermally activated and either
consume or produce heat. Many silicate reactions not involving
hydration are endothermic whereas reactions that involve hydra-
tion are commonly exothermic (Haack and Zimmermann, 1996).
Inelastic deformation such as crystal plasticity, fracturing and
frictional sliding (Wu et al., 2006) produce heat whereas grain-size
reduction and melting consume heat. The important issue concerns
the total heat budget of the deforming, reacting rock mass; this is
where the coupling between all of the interesting processes arises
and is why a thermodynamic approach supplies an integrating
framework.

It is well known in many fields of science that systems involving
a processes each of which produce or consume heat, evolve
according to an equation of the form:
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where DT/Dt is the time material derivative of the absolute
temperature, T, kij is the thermal diffusivity tensor and xi is a spatial
coordinate. la is a parameter that is a measure of the dissipation for
the ath process; for thermal-mechanical and thermal-chemical
processes it is the Gruntfest Number and the Damkoehler Number
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Fig. 1. Boudins developed in a two-layer sequence for pure shearing. Feldspathic layers
embedded in quartzite. Parameters are identical to models in Table 4, Hobbs et al.
(2008). Bulk extension 340%. Temperature 530 K.

B.E. Hobbs et al. / Journal of Structural Geology 31 (2009) 752–755 753
respectively (Veveakis et al., in press). Ea is the activation energy for
the ath process. Eq. (1) is a special form of the reaction-diffusion
equation and its form derives from an Arrhenius dependence of the
relevant geological processes upon temperature. Eq. (1) is the
Energy Equation derived in Hobbs et al. (2008). Coupled processes
that obey (1) have been widely studied and the solutions of many of
the equations involved are well known (Law, 2006). In (1), if T is
replaced by c, the concentration of a mineral species, and the
exponential dependence is replaced or augmented by non-linear
terms involving c, then the result is the behaviour discussed by
Ortoleva (1994) for a diverse range of processes including meta-
morphic differentiation. All of these relations can be derived using
modern continuum thermodynamics as presented in Hobbs et al.
(2008).

Eq. (1) is the basis of a unified self-consistent framework
describing the evolution of structures seen in deformed rocks. Our
approach and that of others, has been to study special cases of this
complete coupling. Examples of these special cases are:

(i) The isothermal case where the strain-rate is small compared
to the thermal diffusivity. This corresponds to the outcrop
scale where chemical reactions are coupled to inelastic
deformation. These conditions result in strain-rate softening
and shear zones, folds and boudinage develop because of this
rate dependent softening (Hobbs et al., in press).

(ii) The isothermal case where the strain-rate is small compared
to the thermal diffusivity and both chemical reactions and
chemical diffusion operate. This corresponds to the micro-
meter scale in metamorphic rocks (Regenauer-Lieb
et al., 2009).

(iii) The case where the strain-rate is small compared to the
thermal diffusivity, and l is a non-zero Gruntfest Number. This
corresponds to the regional scale where thermal-mechanical
feedback is the dominant process. Shear zones, folds and
boudinage again develop. These conditions are the topic of
Hobbs et al. (2008).

(iv) The adiabatic case where the strain-rate is large compared to
the thermal diffusivity and la represents both the Gruntfest
and the Damkoehler Numbers. This corresponds to seismic
frictional slip within a thin localised zone where mineral
reactions including melting operate (Veveakis et al., in press);
this coupling is particularly important for understanding the
development of thin zones of ultramylonite and pseudo-
tachylite within wider mylonite zones.

Thus the deformation response of a rock depends on time and
length scales as well as the details of the processes operating. In
Hobbs et al. (2008) we chose the simplest of these situations
where the strain-rate is small and only thermal-mechanical
feedback operates. This necessitates a response at the regional
scale but the other papers mentioned above begin to address some
of the other scales. The common response is that the coupling of
rate sensitive deformation processes to chemical reactions, mass
diffusion and thermal transport results in strain hardening/soft-
ening as well as strain-rate softening/hardening. Strain-rate soft-
ening is fundamental in developing shear zones, folds and boudins
since any small perturbation in strain-rate is self-enhancing and
leads to rapid amplification of the instability as expected from (1).
The initiation of instabilities in these materials depends on initial
heterogeneities (Needleman, 1988) and hence the wavelength of
folds is sensitive to these heterogeneities. As this instability grows,
exothermic processes such as fracturing and silicate reactions
involving hydration destabilise the folding process whereas
endothermic processes such as non-hydrating silicate reaction or
grain-size reduction stabilise the process for seismic deformations
but destabilise deformation at slower strain-rates at the outcrop
scale. The important point is that structures that form are similar
at all scales. At fine scales the processes discussed by Ortoleva
(1994) operate but are still governed by a diffusion-reaction
equation.

Not only do shear zones and folds develop by these processes
but so do boudins. One of the problems with the Biot type approach
is that boudinage is not predicted to develop (Smith, 1977;
Schmalholz et al., 2008) in power law viscous materials unless the
stress exponent is relatively large (say >5). Strain-rate softening
readily produces boudins even in Newtonian materials with
viscosity ratios as low as 10 (Fig. 1); other examples are given in
Hobbs et al. (in press).

Clearly one of the main issues facing proponents of the Biot type
of theory is that although it predicts the development of folds in
materials with a stress exponent less than 5 (so long as the
boundary conditions are suitable), for identical materials and
identical types of boundary conditions it predicts that boudinage
will not form. This is quite unsatisfactory and seems to be glossed
over by proponents of the Biot approach. We show in the papers
mentioned above that if any form of rate dependent coupling is
included in the mechanical response then shear zones, folds and
boudins form readily even in materials where the Biot theory
predicts no structures would form.

2. Wavelength to thickness ratios

We thank Sue Treagus and Peter Hudleston for the catalogue of
wavelength to thickness ratios that have been measured by various
workers. However, in unstable systems it is not possible without
additional information to take the dispersion (growth rate versus
wave-number) relations derived by a linear instability analysis and
apply those results to the continued growth of the structure. The
theory developed by Biot is, for the most part, a linear theory of low
amplitude folding and strictly is only applicable within the
approximations involved in the linear stability analysis. In contrast,
two papers that address large amplitude, thick layer folding
analytically are by Mühlhaus et al. (1994, 1998). In Mühlhaus et al.
(1998) the results are for large amplitude folds with constant force
boundary conditions and so are directly applicable to the argu-
ments raised by Treagus and Hudleston (in press). The results
presented in Figs. 5–9 in Mühlhaus et al. (1998) are not computer
simulations; they are analytical solutions to the large amplitude
problem. Although a spectrum of wavelengths may exist at small
amplitudes (the region where the arguments of Treagus and
Hudleston (in press) and the Biot theory are relevant) only a single
wavelength is developed by the time large amplitude folds are
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formed. Thus we have to disagree with Treagus and Hudleston (in
press) that the Biot theory predicts a range of wavelengths at finite
amplitudes. The same conclusions follow for constant velocity
boundary conditions (Mühlhaus et al., 1994) where single wave-
lengths are produced at much lower amplitudes than for constant
force boundary conditions.

As we indicated in Hobbs et al. (2008) the wavelength to
thickness ratio, L, which develops for a particular viscosity ratio for
finite amplitude folds, using the Biot approach, depends on the
boundary conditions for loading. Most treatments of the folding
problem using a Biot type of approach assume that the deformation
results from a constant force as would be imposed by a dead load.
Under these conditions the folding amplification is driven by this
load and the growth rate is exponential to large amplitudes. For
small deflections (the range of validity of the Biot theory) it makes
no difference if the boundary conditions consist of constant force or
constant velocity or any combination of these; one gets identical
behaviour. However Mühlhaus et al. (1994) shows that if the
deformation continues past the point where the instability begins
to grow (that is, folds start to grow) then the boundary conditions
make a very large difference to the value of L that develops. It
follows from Mühlhaus et al. (1998) that if the boundary conditions
consist of a constant force then for large amplitude folding, L has
one value and is that predicted by Sherwin and Chapple (1968)
despite the comments of Treagus and Hudleston (in press).
However for constant velocity boundary conditions, the force
within the deforming layer rapidly drops to small values and fold
growth due to this force stops (Mühlhaus et al., 1994). This is
because the constant velocity boundary conditions preclude
acceleration of the boundary and hence the force in the layer must
drop to zero. This type of behaviour has been well documented for
different boundary conditions for many systems (see Shawki, 1986,
for a thorough treatment) and is true for multi-layers as well as
single layers. Fold growth after the force in the layer has decreased
is the result solely of homogeneous shortening but only one L

survives to large amplitudes. The values of L that result for identical
material properties and strains are quite different for the two types
of boundary conditions so that quoting a value for L is not very
informative unless one knows the boundary conditions. The data
presented by Treagus and Hudleston (in press) are extremely
interesting in light of the above discussion but certainly are not
definitive when it comes to distinguishing various mechanisms for
folding. These same comments apply to multi-layer models as well
as to single layer folds.

We admit we were remiss in quoting L values of 2–4 for the
folds described in Hobbs et al. (2008). The number 2 arises from the
ideal case where shear zones inclined at 45� to the layer are
repeatedly developed in the layer. This never develops to perfection
and so as the folds grow any observer would note that values near 4
are common and values as high as 7 develop locally.

3. Single and multi-layer folds

We were not aware that the importance of a scientific result is
proportional to the amount of space it occupies in a publication. We
concentrated on single layer folds in Hobbs et al. (2008) in order to
illustrate the principles involved, namely, that the viscosity
decreases in the inner hinges of incipient folds due to thermal-
mechanical feedback. This process is self-amplifying because of the
feedback relations inherent in (1) and folds quickly amplify. This is
true no matter how many layers exist and our exploration of the
situation suggests that there is little interaction between layers;
this is why we were careful to document the distances between the
layers in Hobbs et al. (2008). Thus unlike the Biot approach, where
it is important if layers are closer than an interaction distance,
thermal-mechanical feedback processes are spatially localised to
the immediate vicinity of the strain-rate perturbation. Thus once
the principles are established for thermal-mechanical behaviour in
a single layer it requires relatively little space to expand the
discussion to multi-layers. The situation is different for the Biot
approach where many papers continue to be published to explore
the interaction between layers.
4. Concluding remarks

We reiterate that a framework based on modern continuum
thermodynamics holds the promise for an integrated, self-consistent
approach to understanding the development of structures and
fabrics in structural geology. This is because such a framework is
based on the heat budget for the deforming-reacting rock mass and
describes the ways in which the energy dissipation is apportioned
between the various processes operating. The relationship describing
all of these processes can be derived from continuum thermody-
namics and is a reaction-diffusion equation. The details of the
apportionment of the dissipation are dependent on the spatial scale
and the strain-rate relevant to the problem involved. We concen-
trated in Hobbs et al. (2008) on the regional scale because that is the
simplest problem to tackle first. Nevertheless shear zones, folds and
boudins develop readily at this scale in rocks with material properties
such that these structures would not develop given a strict Biot
mechanism. We show elsewhere that identical structures develop at
all scales if the dominant coupling processes operating at those scales
are considered (mineral reactions at the outcrop scale and mineral
reactions plus chemical diffusion at the micro-scale). Given the fact
that a variety of non-Biot mechanisms potentially exists for
producing folds and that for some of these mechanisms, as well as the
Biot mechanism, the wavelength to thickness ratio that develops for
finite amplitude folds is strongly dependent on the boundary
conditions, values of L are not diagnostic of any particular mecha-
nism or any particular viscosity ratio given our present state of
knowledge. We want to emphasise that an analytical solution to the
Biot theory predicts only one wavelength at large deflections. Folding
in multi-layer sequences arising from thermal-mechanical feedback
is exactly the same as for single layers and does not require inordinate
amounts of space to describe in a scientific publication once the
process for single layers has been established.

Finally, the review by Hunt et al. (1997) points out that the Biot
theory is a special case of a general equation that describes the
growth of deflections in a layer. The Biot theory (as it is commonly
expressed) assumes small deflections and that the constitutive
relations of the layer and the embedding material are linear. This
means that the growth rates of individual wavelengths are inde-
pendent and hence the preoccupation with defining the fastest
growing wavelength. If the constitutive relations are non-linear
then the response can consist of localised packets of folds forming
or even fractal geometries; the concept of a dominant wavelength
no longer exists. The paper by Hobbs et al. (2008) is an example of
this more complicated behaviour. We believe there is much to be
learnt from folded rocks yet and that an exciting new period of
observation is upon us. This means exploring the non-linear
dynamics of folding and not restricting ourselves to linear, low
amplitude theories.
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